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We consider an urn model closely related to the Fisher-Felderhof droplet model 
for the purpose of studying the relation between metastability and analytic 
continuation. For this model both the statics and dynamics can be solved and 
we confirm the relation between the metastable decay rate and the imaginary 
part of the analytically continued free energy (actually, pressure, in this model). 
We also find that eigenvalue degeneracy, an old theme for static aspects of 
phase transitions, appears in the dynamics as well. When approaching the phase 
transition from the stable side it is a degeneracy in the eigenvalues of the linear 
operator appearing in the master equation that causes the system to lock into a 
particular phase. 
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1, I N T R O D U C T I O N  

For  first-order phase transit ions several questions remain  unanswered.  
First, one would like to know the na ture  of the singularity in the thermody- 

namic  funct ions  at the t ransi t ion and  the extent to which this singularity is 
model  dependent .  Second, there is the physically significant p h e n o m e n o n  

of metastabi l i ty  which presents substant ia l  problems within the mathemat i -  
cal f ramework (Penrose and  Lebowitz, (1) Sewell(2)) of statistical mechanics  
with its emphasis on the the rmodynamic  limit. A n d  finally, there is evi- 

dence of dramat ic  behavior  within the metastable  region. This comes under  
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the rubric "spinodal," but until the second issue raised above is dealt with 
one hardly knows how to approach this last question. 

Because the two-dimensional Ising model is unsolved for nonzero 
external magnetic field, past research on first-order transitions has used 
models with serious physical defects. Penrose and Lebowitz (3) found that a 
system with effectively infinite range forces could remain indefinitely in a 
state of nonminimal free energy (hence called metastable) and that, as for 
mean field theory, the thermodynamic functions were analytic at and 
beyond the first-order transition. On the other hand, the physically moti- 
vated droplet approximation (Andreev, (4) Fisher, (5) Langer (6)) suggested 
an "essential singularity," with deviations from analyticity of the form 
e x p ( - c o n s t / H ) ,  where H is an external field that vanishes at the transi- 
tion. Study of the droplet approximation was facilitated by the introduction 
of yet another idealized model for which that approximation is exact. In 
this one-dimensional model, which we call the Fisher-Felderhof mod- 
el (Fisher, (5) Fisher and Felderhof, (7,s) Felderhof and Fisher, (9) Felder- 
hof (m-12)) certain configurations of particles are designated "droplets." A 
droplet of size n is a maximal collection of n particles each of which has as 
neighbor at least one other member of the droplet within a specified range 
of it. An energy E, is assigned to a size n droplet and the energy of the 
entire system is the sum of the individual droplet energies. The simplifying 
and unrealistic feature of this model is that the droplets do not interact with 
each other. 

In this paper we further simplify the Fisher-Felderhof model, a step 
we were forced to take because of our interest in the dynamics of the 
transition. To motivate this concern with dynamics we now provide further 
background on conjectures that arose from the droplet approximation and 
from earlier studies that concentrated on the analytic properties of thermo- 
dynamic functions. 

For a ferromagnetic system let f (T ,H)  be the free energy per unit 
volume as a function of temperature and external field. As indicated earlier 
the analytic properties of f are problematic for first-order transitions. 
However, the function f can also be used to address the second question 
raised above. Thus, despite difficulties in defining the concept of metasta- 
ble state, it may be that for T < T c (=  Curie temperature) the function f 
can be analytically continued from, say, the region H i> 0, where it is 
obtained from a certain limit of the partition function, to H < 0. Since f is 
analytic with H a complex variable the singularity at H -- 0 is no impedi- 
ment to the analytic continuation unless, say, the imaginary H axis is a 
natural boundary. One would now like to relate the continued f to proper- 
ties of laboratory metastable systems and this is where unresolved problems 
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of interpretation occur. To effect the continuation one can use various 
methods [droplet calculations (Langer, (6) Wallace(~3)), transfer matrix 
(Newman and Schulman(~4)), series expansions (Baker and Kim, (15~ Priv- 
man and Schulman (16'Iv))]. 

In general, f which was real for real positive H, develops a nonzero 
imaginary part for real negative H. Quantitative comparison of the contin- 
ued f with metastable dynamical systems is most easily done for model 
systems and in this way the derivative with respect to H of Re f has been 
compared to the magnetization in a dynamical Ising model. The system is 
put into a state in which most spins oppose the magnetic field and it rapidly 
relaxes to a well defined metastable state. Eventually the magnetization 
begins a sudden, rapid change and the system decays to the stable state. 
[This is the situation for low T and not too large a system; it arises 
presumably from the formation of a critical droplet. For very large systems 
and close to T~ critical droplets occur early on and the relaxation has a 
different character (Binder(~8)). In this regime analytic continuation need 
have no relevance.] The correspondence of ~ ( R e f ) / 3 H  with the mean 
magnetization prior to the rapid decay of the dynamical system is quite 
good over a large range of H (McCraw and Schulman(~9~), supporting 
thereby the ideas on analytic continuation. 

But Im f has presented a conceptual problem. Langer (2~ studied the 
dynamics of the phase transition using the same droplet approach that he 
had used for the analytic continuation and found the decay rate per unit 
volume F to be proportional to Im f with the proportionality factor 
related to the properties of the critical droplet and nearby states. Compari- 
son with experiment is not straightforward. Work of Huang et al. ~22~ 
appeared to allow metastability to persist well beyond the parameter 
values predicted by Langer, but contradiction was avoided (Binder and 
Stauffer, (23) Langer and Schwartz (24~) by taking into account critical slow- 
ing down and the time required for heat or other transport. The Monte 
Carlo studies of the dynamical Ising model cited above (McCraw and 
Schulman (19)) tend to confirm the (Ira f )  - F connection, but the precision 
is not good enough to make statements about ~. Finally, and this brings us 
close to the emphasis of the present paper, analytic studies of certain 
stochastic processes whose equilibrium properties exhibit a phase transition 
have been made (Newman and Schulman(aS)). The systems are mean field 
models and the transition is the spinodal. Nevertheless, the decay rate 
through the spinodal is rigorously found and shown to be proportional to 
Im f with the factor ~r correctly predicted by the droplet approximation-- 
when appropriately interpreted. This correspondence holds only asymptoti- 
cally near the phase transition, but this is quite reasonable. Many possible 
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dynamical laws reproduce the same equilibrium, but for finite distance into 
the metastable domain differences in the dynamical process will affect 
transition rates. One expects less ambiguity for Hamiltonian time evolution. 

In the present paper we study a variant of the Fisher-Felderhof model 
which both exhibits a phase transition and to which can be assigned a 
tractable stochastic process. The model is flexible and is a laboratory for 
the ideas presented above. Implicit in our discussion was a mathematical 
framework for metastability, namely, analytically continue from the stable 
region (see Newman and Schulman (2s) for further discussion). The continu- 
ation can be done and we once again validate the relation 

Im f - - r / K  (1.1) 

Furthermore, we are able to study an exotic version of the model in which 
analytic continuation is impossible and there too we find corresponding 
trouble in the stochastic dynamics. 

2. A CLASS OF MODEL SYSTEMS 

Consider an urn of unit volume in contact with an infinite reservoir of 
particles held at temperature /?-1 and chemical potential /~. If the urn 
contans n particles, it is taken to have energy E n where E 0 = 0. Provided 
n -  ~E n is bounded from below, the system attains equilibrium with pressure 

p(/x) = f l - ' l o g  k e/~(~n-e") (2.1) 
n = 0  

A model in this class is thus specified by prescribing the energies E,.  There 
is a connection between this class of urn models and a one-dimensional 
lattice gas related to the Fisher-Felderhof (FF) model [Gallavotti, (26) 
Roepstorff (27)]. In contrast to the urn models, the (lattice-) FF models have 
a nondenumerable set of states, i.e., the set of all subsets of the integers. To 
any X c 7/ interpreted as the set of occupied sites, one associates a 
translation invariant energy 

U(X) = 2 ~(Y)  (2.2) 
r < x  

where q~(X) = 0 unless X is a cluster (i.e., an interval of integers) and if X is 
a cluster of size n, it is given the potential energy Jn = if(X). The total 
energy is therefore 

e ,  = U ( X ) =  ~ (n - k + 1)J k (2.3) 
k = l  

As can be shown (Roepstorff(27)), the grand canonical ensemble leads to 
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the pressure 

/5(g) = p(/~) (2.4) 

(barred quantities refer to the FF model) where p ( # )  is given by (2.1) and 
the chemical potential of the FF model, g, is related to/~: 

= ff + o ( ~ )  (2.5) 

This unfamiliar transformation of the chemical potential reveals its simple 
meaning in the canonical ensemble. From (2.4) and (2.5) we calculate the 
mean density of particles on the lattice as 

d/fi _ d e clff _ p (2.6) 
P -  d~ dff dFt 1 + ~  

This shows how the specific volume, ~ = 1/~, of the particle on the lattice 
relates to the specific volume, v = 1/p, of a particle in the urn (at the same 
temperature and the same free energy per particle): 

= v + 1 (2.7) 

Owing to the lattice spacing the minimal volume occupied by a particle is 1. 
To see that the free energies are indeed the same, we first determine the free 
energy per unit volume: 

A ( ~ ) = s u p { g } - / ~ ( g ) )  = s u p  ( f f + p ( / ~ ) )  l + p  

_ 1 A ( o )  (2 .8 )  = _ L _ _ l  . s u p (  t 0  - 1 l + p  t~ 

Then we pass to the free energy per particle, F ( v ) =  vA (v-1) ,  and obtain 
the relation 

ff(~) = F ( v )  (2.9) 

Obviously, the macroscopic properties of the two models are the same apart 
from a trivial change of the specific volume. 

We next introduce a stochastic dynamics for the lattice model and use 
the simplifying feature of the urn model to reduce the state space to a 
tractable size. The state at time t is specified by the number X, of particles 
in the urn; X, is a random variable taking values in (0, 1,2 . . . .  }. A 
Markov chain is obtained if, for discrete time steps, we fix the time- 
independent transition probabilities 

P,,m = Pr~ = m IX, = n) (2.10) 

P = ( tTnm) is the transition matrix of the system. The constraints 

0 < p n m  < 1, ~ p n m = l  (2.11) 
m 
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render P a stochastic matrix. Let u n ( t ) =  Prob(X~ = n); then the time 
evolution of the probabilities u n is governed by the master equation 

Um(t + 1) = E U n ( t ) P n m  (2.12) 
n 

The assumption of detailed balance is 

WnPnm = Wm])rn n (2 .13)  

for a set of numbers w, > 0. Provided 

Z = ~ w, (2.14) 
n = 0  

exists, the numbers w n yield the stationary state of the Markov process, 
u, = Z -  lwn. In the context of statistical mechanics, the w, are Boltzmann 
weights defined by the system in equilibrium and Z is the partition 
function. For our model, the weights are taken to be 

wn = e~(~, Eo) (2.15) 

so that u~ is the Gibbs state of the urn. 
There is ambiguity in choosing Pnm" One condition to reduce the 

freedom is to allow only jumps of magnitude unity: 

P n m =  0, I n - m[ ) 2 (2.16) 

This fixes P to be an infinite Jacobi matrix. However, even with the 
condition (2.16) there is still ambiguity in defining the Markov process. We 
take 

Prim = O[(Wm/Wn) 1/2' In - m l  = 1 

Poo = 1 - Pol  

p ~  = 1 -  p ~ , +  l - p ,~  l ,  n >l 1 

(2.17) 

where we choose a > 0 small enough so that Pnn ~> 0 for all n. Such a can 
be found provided (2.15) holds and the difference E n +! - En is bounded 
from below. 

Using matrix notation, we write 

P = 1 - a S - 1 B S  (2.18) 

where S is a diagonal matrix, Snn = (Wn) 1/2. B is therefore positive and 
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symmetric: 

b - 1  ] 

- - 1  b l - 1  
B =  - 1  b 2 - 1  ' 

bo = (wl /wo)  1/2 

bn = (w .+ , /w . ) ' / 2  + (w ._ , /wo)  

(2.19) 

From the assumption En+ 1 - E ~  > C > - ~  we infer that the b,'s are 
bounded. Therefore, B may be viewed as a bounded linear operator on l 2, 
the space of square summable sequences, with spectrum contained in the 
interval [0, 2 / a ] .  

If ~ w ,  < m, the vector 

bl .--- [ (Wo) 1/2, (W,) 1/2 . . . .  ] (2�9 

belongs to 12 and B u  = 0. Conversely, any vector v satisfying B y  = 0 is a 
multiple of u. Thus, stable systems are characterized by zero being an 
eigenvalue of B. 

If B were a finite matrix, the remaining eigenvalues would be bounded 
away from zero and the state of equilibrium would be reached exponen- 
tially fast. This behavior is also characteristic for infinite systems away 
from the critical points where a phase transition occurs�9 However, if B is 
infinite and the chemical potential assumes its critical value, the remaining 
spectrum may extend down to zero as we shall see below. The disappear- 
ance of the spectral gap gives rise to a slowing down of the dynamical 
approach to equilibrium. This is how the dynamics reflect the phase 
transition�9 

3. THE LOGARITHMIC MODEL 

We now turn to a specific model�9 Let 

E n = logn, n = 1,2, . . .  (3.1) 

The pressure is therefore 

p(/z) = [ / ? - ' l o g ( l +  o% n = l ~ n - B e ~ )  ' /~>0,/z'<<0 (3.2) 

From the point of view of equilibrium statistical mechanics, the region 



42 Roepstorff and Schulman 

/x > 0 is inaccessible, a feature reminiscent of the Bose gas; /~ = 0 is a 
critical value for the chemical potential of the urn. For the lattice, the 
corresponding value is 

~c = p ( 0 ) =  f i - ' l o g [  1 + ~ ( f i ) l  (3.3) 

(f  = Riemann zeta function) provided/? > 1. For fi ~ 1 the lattice model 
never reaches a critical state. At ~ = gc the system begins to condense. The 
condensation process is complete when all lattice points are occupied 
(~ = 1). Within the urn, this process is never completed: there is simply no 
state to which the system may tend; the density rises indefinitely. 

As/x tends to zero (i.e., ~--> go) we distinguish two regimes: 
I. 1 < fl < 2: The pressure remains finite, but the density dp/dl~ 

tends to infinity. 
II. fi > 2: Both the pressure and the density remain finite. 
Technically speaking, the pressure is a convex function of the variable 

/~. As fi exceeds 2, this function develops a cusp at/z -- 0. As a consequence, 
the derivative dp/dlx cannot be unique at/~ = 0. As is common in convex 
analysis, one introduces the concept of subdifferential to replace the 
derivative when it is not defined. We define the subdifferential of p at/z = 0 
by 

ap(0) = {plp(/x) t> p ( 0 ) +  p/~} (3.4) 

and justify this notion by the following result: p minimizes the free energy, 
A (p), if and only if p ~ 0p(0). 

Now p E Op(0) (we tacitly assume fi > 2) is equivalent to p >/Po where 
P0 is the density of the urn at the onset of condensation 

 -(fi - l )  
Oo - 1 + ( 3 . 5 )  

Initially, when we raise the density, the free energy A (0) decreases until we 
reach the density P0 to stay constant for p >/00. This behavior of the free 
energy is reflected in the appearance of straight line portions of the 
isotherms, similar to those obtained in classical van der Waals theory by 
the Maxwell equal-area construction. It is an old belief that the "wiggle" in 
the van der Waals equation of state explains experimentally observed 
metastability. However, a contemporary view, allowing for a richer equa- 
tion of state, generalizes the following of the wiggle to the analytical 
continuation of the free energy or pressure. In our model, this means 
continuing p(/O to the domain Re/~ > 0. This is easily accomplished by 
using the Robinson (2s) formula 

~]~ n-fieB"n= ( -  filx)B-lr(1-- fi ) + ~ ( fifx)~ ~ ( -fl-n-~ n) (3.6) 
n = t  n=O 
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(/3 =/= 1,2, 3 . . . . .  F = gamma function). While the series on the left loses 
its meaning when Re/z > 0, the series on the right converges for fl]/~1 < 2~r. 
If/3 = 1,2, 3 . . . . .  the equation (3.6) has to be replaced by 

- - log ( l  - e~), /3 = 1 

(/~fl )P- ' - 1 _ log( -/3/-01 
~_~n-~e~,~= (--fi--- 1)f [ ]~2; n j (3.7) 

n = l  

- -  , / 3=2 ,3  . . . .  
n=O 

n~-/?-- 1 

For all /3, /~ = 0 is a branch point for p(/~). If we analytically continue 
around/~ = 0, the pressure acquires an imaginary part on the positive real 
axis with sign depending on the path around the origin. As/z tends to zero 
along the positive real axis, 

Im p(~)--~{ 

where 

+ (log g - 1 ) - ' ,  /3 = 1 (3.8) 

_+a-/~B-I, /3 > 1 

a = ~B~-2r( /3)-~[1 + f ( B ) ] - '  (3.9) 

Let us now investigate the Markov process when/z changes sign. We 
take 

w 0 =  1 

W n = 17 B e Blm 

(3.1o) 

and define the transition matrix by (2.18) and (2.19). To justify the use of 
Eq. (2.18) we observe that En+ 1 - En = log(1 + 1/n) is bounded below. It 
is important that the process is well defined even if tz > 0 where we hope to 
obtain information about the metastable decay rate. 

For tt > 0 the sum over the wn's does not converge and thus the 
operator B loses its eigenvalue zero. Consequently, the urn's occupation 
grows indefinitely and never reaches equilibrium. However, for the asso- 
ciated lattice model there is the condensed state of unit density to which the 
system tends. We may say that in the regime /~ > 0 the Markov process 
models the condensation in the more realistic system. 

If # is positive, but small, and if fl > 1, the Boltzmann weights w n 
initially decrease with n, though they will ultimately tend to infinity. The 
significance of this fact is that for a long time states with small occupation 
do not notice the chemical potential's being nonzero. They will tend to a 
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near equilibrium, i.e., the metastable state, though the mean occupation 
grows slowly with time which we interpret as the decay of the metastable 
state. 

Let us assume that the spectral gap of the operator B is the interval 
[0, X]. Then the decay rate of the metastable state is 

F = - log(1 - ah) (3.11) 

as can be inferred from (2.18); X is a function of IX > 0 and is expected to 
tend to zero at a certain rate as Ix---)0. The next section is devoted to the 
study of X(IX), where we also want to compare F with Im[p(  g)]. 

Finally, we present a model which at first sight challenges the connec- 
tion between metastability and analytic continuation. Suppose we alter the 
logarithmic model slightly so as to make the line Re IX = 0 a natural 
boundary for the analytic function p(IX). Can metastability be observed in 
such a case? First we describe such an alteration and argue heuristically for 
an affirmative answer. However, in a later section we shall show the 
weakness of that heuristic argument. The argument runs as follows. With 
the radius of convergence of the series ~,anz r" being 1, it can be shown that 
if l i m r n / n  = m, then Izl = 1 is the natural boundary of the analytic 
function defined by the series (Dienes(29)). For instance, 

f ( z )  = z + z 2 + Z 4 "1- Z 8 "t- " ' "  (3.12) 

is a typical " lacunary" series that cannot be continued to tzl > l The same 
is then true for 

We take 

oo 

z"e -~E"(~) =-- ~ z~e-~L;+ e f (z ) ,  c >1 0 (3.13) 
n = O  n = O  

p(ix,~) = f t - ' l o g  ~ e BL~ E,,(~)I (3.14) 
n = 0  

as the pressure of a fictitious model. The argument for dynamical metasta- 
bility runs as follows: Since E may be chosen as small as we please, the 
physics of the system will not be noticeably different from that of the 
system where e = 0. Furthermore, we may assume p(  IX, 0) to be defined for 
Re IX < 0 and continuable to Re IX > 0 where it acquires an imaginary part 
on the positive real axis. On the other hand, for no e > 0, can p(ix, e) be 
continued beyond Re IX = 0. This argument, an apparent  contradiction to 
the underlying ideas of metastability, will be analyzed more carefully 
below. 
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4. STOCHASTIC DYNAMICS FOR THE URN 

As stated above the urn is in contact with a heat and particle reservoir 
at temperature T ( =  1/ f l )  and chemical potential /~. The state at time 
t E Z is specified by the random variable X t, the number of particles in the 
urn. On a given time step, X t can change by unity with transition probabil- 
ity p/j = Prob(X,+ 1 = j I X t  = i). The properties of py are given in Eqs. 
(2.1t)-(2.17) above. Recalling the notation of Section 2, the equilibrium 
state of the system is 

G(t)  = Prob(X t = n ) =  w n /  ~ w~ (for all time) 
k=0  

We recall our particular choice of p~ 

PO ~ ( w J )  ~/2 = - -  for l i - j [ =  1 i , j> lO (4.1) 
w i 

Pii = 1 -P i i+ l  - P i i - 1 ,  i >.> 1 (4.2) 

P0o = 1 - P01 (4.3) 

where a is a fixed positive number small enough so that p ,  > 0 for all i. 
Another common choice for p~. is to replace Eq. (4.1) by Pi i+l = aWl+ J w i ,  
Pii-1 = a. One can also select pO so that all diagonal elements but Poo 
vanish, which has the advantage of reducing the arbitrariness of the choice. 
For convenience in handling the matrices, however, we stick to Eqs. 
(4.1)-(4.3). 

The {wj} for the logarithmic model are 

W 0 ~  1 
(4.4) 

w~ = n-Bexp(ill.m), n >1 1 

which for bt < 0 establishes the equilibrium state of the stochastic process to 
be the Gibbs state of the urn. 

Our interest is in/~ = 0 and/~ > 0. At/~ = 0, which for fl > / /c  = 1 is a 
first-order phase transition, it will be instructive to see how the transition is 
reflected in the dynamics. (In fact, we shall see that eigenvalue degeneracy, 
useful for understanding long-range order, also plays a role in halting the 
wandering of the state in time.) For t~ > 0 the sum over the wi's does not 
converge and the urn's occupation grows indefinitely. However, as we have 
seen above the urn free energy can be analytically continued to Re/x > 0 
and we now- examine the rate at which the urn begins its headlong filling. 
Now despite the nonexistence of an asymptotic equilibrium state this 
system is similar to the usual metastable decay process in that along the 
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way to the distant asymptotic condition there is a barrier. The process is 
considerably slowed at the barrier and until it gets past it the system will 
have properties not significantly different from nearby/x < 0 states. Specifi- 
cally, the transition matrix p~ will have nearly equal values for increase 
or decrease of urn occupation for that k at which the function w k = 
k-~exp( f l~k)  is stationary. Near  such k the process looks like diffusion 
without drift and progress is slow. The minimum of w k for small positive/x 
is at ko~l / l~ .  For k < k 0 there is drift toward smaller k so that the very 
reaching of k 0 is unlikely. For k > k 0 there is drift toward higher k so that 
once the system passes k 0, it is well on its way. The foregoing is analogous 
to the role of the critical droplet in metastability. 

For/~/> 0 it is convenient to truncate the stochastic process. From the 
above discussion of the t~ > 0 case, it is clear that we will have full 
knowledge of the rate at which systems find their way to the regime of 
rapid growth if we truncate the stochastic process at some N with N >> 1//x. 
This truncation is accomplished by setting the transition probabili ty 
N + 1 ~ N to zero. With this modification, we can, in the master equation, 
Eq. (2.12), confine attention to u,, n < N, since once an urn has occupancy 
greater than N it never turns back. Therefore it is sufficient to consider the 
(N + 1) • (N + 1) matrix PN whose matrix elements are just the p~, i, j 
= 0 . . . . .  N. This is not a stochastic matrix since the sum of the elements 
of its last row is not unity. For the case/~ = 0 we make a slightly different 
change in the stochastic process: for some selected N, systems which would 
under the old scheme have made the transition N o  N + 1 are now held at 
N. Operationally this means we consider an (N + 1) • (N + 1) transition 
matrix QN whose matrix elements are identical to those of PN except that 

( QN )XN = 1 -- pU U-~ (4.5) 

[For Pu we had (PN)NN = 1--PNN--1--PNN+I =PNN'] QN is therefore a 
stochastic matrix with largest eigenvalue 1. That  is, it has an equilibrium 
state which in fact is the left eigenvector (w o, W l , . . . ,  WN). 

At a first-order phase transition one is used to the idea of there being 
two (or more) competing states of the system. However, the time for 
passage from one of these states to the other should be a rapidly increasing 
function of system size. For the master equation this situation could be 
reflected in a near degeneracy of the largest eigenvalue so that initial 
amplitudes along the eigenvector of next largest eigenvalue would decay 
extremely slowly. Thus for the Ising model on an M • M lattice the Gibbs 
state has its support on two classes of configurations widely separated in 
terms of  single spin flips. This suggests a degeneracy on the order of 
e x p ( - c o n s t  �9 M2). The usual macroscopic time scale in Ising simulations is 
only M 2 spin flip attempts per second so that relaxation from one "phase" 
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to the other would be exponentially long in the volume. For the urn system 
our basic singularity is a branch point rather than an exponential. Never- 
theless, we shall still find that at the first-order transition relaxation is 
slowed and the recovery time grows as N 2. Specifically we will show the 
degeneracy behaves as 1 / N  2 with N the value at which we modify the 
stochastic process. By contrast, with /x a fixed small negative number 
the degeneracy is of order unity so that any reasonable macroscopic time 
scale would be o (N) / s ec  (with N again a cutoff). Thus at the first-order 
transition recovery will go like 

( c o n s t )  ~ 
1 N2 -->1 

which is to say the system will remain in the nonequilibrium state. 
To study the matrices Pu and QN it is convenient to perform a similar- 

ity transformation with the ( N +  1)•  ( N +  1) matrix S = diag[(wi)l/2]. 
The new matrices are Hermitian and their spectra unchanged. For SQNS - 1 
the eigenvector with eigenvalue 1 is [(Wo) 1/2, (w01/2 . . . .  , (Wu)l/2]. It is also 
convenient to eliminate the portions of PN and QN proportional to the 
identity. Let 

A = !S[1L - -  QN] S - I '  B = 1 S [ 1  - PN]S -1 (4.6) 
OL a L 

(N dependence suppressed). It follows that the eigenvalues of A are equal 
to or greater than zero, and those of B strictly greater [cf. Eq. (2.18) and 
discussion following]. Thus we study the following questions: (I) What is 
A's first eigenvalue exceeding 0? And (II) what is B's lowest eigenvalue? 

(I) Let X be the smallest eigenvalue of A other than 0. The eigenvec- 
tor for the eigenvalue 0 is k = [(wo)l/Z,(wl) 1/2 . . . . .  (WN)1/2], SO )t can be 
characterized through the constrained variational problem: 

X = i n f ( ~ t A ~ ] ,  where ~ t ~ > 0  and ~ t ~ = 0  

Therefore we have an upper bound on )t: For any x v s 0 with xr = 0 

X < x*A___yx 
x*x 

We now exhibit an O ( 1 / N  2) bound. Consider a test vector x k 
= %(wk) 1/2. We shall not give an exact specification of %,  but will 
characterize it by several properties, q'k will be slowly varying (and of order 
unity) so that x is nearly the eigenvector ~; however, % will have a change 
in sign (at least one "node"  in continuum language) to allow orthogonality: 
x t~  -- ~q~kWk = 0. Also we require % = 0 for k = 0 and N to avoid certain 
endpoint contributions. 
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Then xtx = ~O]wk, which is some finite number  as N ~ oe for/3 > !. 
It is easy to see that 

k ([~, wk / wk 

t 
- 0k+ l(wk+ 1) 1/2 - 0k-  ~(wk_ 1) 1/:)  

= 2 Ok(w~)l/:[Ok(wk+ 1) '/2 + Ok(wk_ 1) '/: 
k 

- -Ok+l(Wk+l)  1 / 2 -  Ok l (Wk- l ) ' / 21  

= end point  contributions (at k -- 0 and N )  

+ N (WkWk-~)1/2(0k -- Ok-,)2 (4.7) 

The end point  contributions (which disappear because 00 = 0N = 0) came 
from changing the summat ion  index f rom k to k + 1 for the first and third 
terms in the brackets. N o w  % makes changes of order 1 in the course of N 
steps; therefore ] 0 k -  0k- l l  = O(1/N) so that 

xtAx = Z (wkw~-l)l/2[ O(1 /N)]  2 = O(1/N2) 

x*x = o 0 )  

Hence  X < O(1/N2). 
It  turns out that  X = O(1/N 2) is not  just  an upper bound,  but  is in fact 

the actual dependence.  We shall demonstrate  this by both numerical  and 
analytical means. Define f~ to be the determinant  of the (k + 1) • (k + 1) 
matrix consisting of the first k + 1 rows and columns of A - M, Then  
satisfies fu  = 0. Defining f _  1 to be 1, it is easy to see that 

fk = (ak -- X)fk- 1 -- fk-2 (4.8) 

with a k the diagonal  matrix element of A, 

"(Wl) 1/2, k = 0 

- -  + wk------L 1 < k ~< N -  1 (4.9) 
a k = \ Wk ] Wk 

WN--I) t/2, k = N  
W N 

N o w  X = 0 is always a solution, but  our interest is in the smallest X > 0 
for which f~ = 0. In  Table I we present numerical results for 2 < N < 300, 
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Table I. N, X ( the Smal les t  Positive Eigenvalue) 
and N2~ for the (N + 1) • (N + 1) Matrix A 

N h N2• 

2 1.8938 92775 7.5755 71100 
!0 0.18646 04938 18.646 04938 
40 0.01232 40653 19.718 50451 
80 0.00311 66517 19.946 57080 

100 0.00199 94097 19.994 09702 
120 0.00139 07042 20.026 14112 
200 0.00050 22775 20.091 09897 
300 0.00022 36002 20.124 01513 

for /3 = 4. No te  that  a factor  N 2 makes  X essentially constant .  By the 
me thod  of rat ional  ext rapola t ion using N > 80 we obta in  IimN__,~N2XN 
= 20.1907281. 

With  this numerical  demons t ra t ion  of the N 2 dependence  of ~ we 
derive analyt ical ly the actual  asympto t ic  value of N 2 as a root  of a Bessel 
function.  Rewrite  Eq. (4.8) as 

- f k + l  + 2fk - f ~ - ,  + (ak+,  - 2 - 2t)f~ = 0 (4.10) 

Using the expansion 

( wk+_, t ' / 2  

Wk / 
[ )l 

= e  -+B~/2 1T- g / ? ~ +  ~ /3 -~ f i +  1 2k 2 

1 19(1 1 2) 3.--~+ O(k -4)] (4.11) u  -~ f l +  1 ) ( ~  f i +  1 

for /~ = 0 we see that  a k is close to 2 for large k different f rom N. Define 
f(x) =f~ for  x = k /N  and 12 = XN 2. Then  (4.10) becomes  for /~  = 0 and  

= + 1 ) / 2  

1 dr  + ( v a - 1 ) - ~  f =12f (4.12) 
dx 2 

with errors of order  k 2. At  k = N, a k has only one term of the form (4.11) 
and  to lowest order  (4.10) is 

1 df x= = 0 (4.13) Bf(1)  + l 

Equat ions  (4.12) and  (4.13) do not  fix l 2 since the small x behavior  of f is 
unspecif ied and  is somewhat  more  delicate an issue because the con t inuum 
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approximation does not hold there. If it turns out that the x = 0 boundary 
condition is N independent then we will in fact have shown that l 2 is 
asymptotically independent of N and therefore X ~ c o n s t / N  2. 

One solution to Eq. (4.12) i s f (x )  = x -B/2 with l = 0; this reflects the 
known invariant state u k = (wk) 1/2. In general (4.12) admits two sorts of 
behavior near x = 0, f ~ x  -B/2 or f ~ x  1+t~/2, Solutions that vanish near 
zero may be expected to reflect solutions of the matrix equation since where 
the continuum approximation breaks down the solution is nearly zero 
anyway. In fact (4.12) is essentially the equation for the spherical Bessel 
function and is solved by 

f ( x )  = ~/-~J~(lx) 

Moreover, the boundary condition (4.13) can be rewritten as 

d~[xB/2f(x)lL"J = 0  for x =  1 
dx 

which, with the help of the recursion formulas for the Bessel function, 
allows us to state the condition on l as 

Jv_l(l)  -~ 0 (4.14) 

For the case /3 = 4, J3/2(l)= 0 is equivalent to l = tan/  and l 2 to ten 
significant figures is 20.190 72856, in excellent agreement with the numeri- 
cal value given above. 

Although we have not supplied a rigorous proof it is apparent that the 
lowest eigenvalue of A above zero is given by 12/N 2 where I satisfies (4.14). 
The function f is also the continuum limit of the associated eigenvector and 
is the ground state of the "Schr6dinger equation" (4.12) with boundary 
conditions (4.13) and f ' ( 0 ) =  0. The x = 0 boundary condition for this 
solution differs significantly from that of the solution x -  ~/2. Apparently for 
finite large N the corresponding eigenvectors manage to be orthogonal 
through small negative contributions near zero from the eigenvector that 
goes on to be a Bessel function. 

By contrast, with/~ < 0 the lowest eigenvalue above zero is O(1), inde- 
pendent of N so that the natural time scale for the urn is 1 time step/sec. 

(II) We next turn to the matrix B, which governs the metastable 
decay rate. Because PN is not stochastic, B does not have the eigenvector 
[(Wo)l/2,(wl) 1/2 . . . .  ] and in contrast to A, it is the lowest eigenvalue of B 
that governs the metastable decay (see Newman and Schulman(25)). As for 
A we can use the variational principle and calling the lowest eigenvalue of 
B fl0 we have 

flo < xtB--~x (4.15) 
x*x 
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with no requirement on x other than not being identically zero. As a test 
vector take xj = ~j(wj) I/2, as we did earlier. However, we do not require 
~)o = 0 and on the contrary take ~0 -- 1. We will still demand that ~j tend to 
zero for sufficiently largej  (and in fact expect it to vanish fairly rapidly for 
j well beyond 1/~). The algebra involved in Eq. (4.7) goes through 
unchanged and with the demand that ~N actually be zero we have 

N 
fl0 < i n f  2 k = l ( W k W k - l ) l / 2 ( t ~ k -  (~k-1)2 --=inf y[~]  (4.16) 

N 2 

First let us consider this expression heuristically, ignoring the normal- 
ization denominator ~,[q~]. One could, as for the matrix A, estimate fl0 by 
taking ~k = 1 for k < 1//~ and ~k = 0 thereafter. For the usual droplet 
model situations softening this cutoff changes nothing since the droplet 
surface energy is relatively less singular than droplet volume as, say, 
magnetic field approaches zero. But now consider the sum in ~,. The 
quantity w k [essentially the same as (wkw k_ l) 1/2] starts out O(1) for k near 
0, drops to O(/x r for k near 1/p. and then grows large again as k increases 
further. Obviously we want to spread the changes in ~k over the region 
k ~ l / l ~  and the question is how broad is that region. Since w~ is minimum 
at k ~ / ~ - -  I / / t ,  we can write 

Wk~WEexp[(k - -  k)2/2A 2] 

Recalling that w k = k-fiexp(kl~fi) and calculating 02wk/Ok 2 at/~ yields 

w E = e%/~, A = I//x 

Therefore the region of change for ~ is O(1//~) so that ] ~ -  Ok-l] is of 
order /x. Therefore the sum in ~, has 1/la significant terms, each of order 
wkl~ 2, and 

/30~<1w~/~2 t~B+ (4.17) 

More rigorous justification of (4.17) is achieved by recognizing the nu- 
merator 7[~] as a kind of action for a system with time-dependent 
mass [ L ~ � 8 9  2, t~--~ k, m~-)(WkWk_l) 1/2, t~(--) X]. The extremum is 
achieved by taking m2 = const, which translates to 

( W k W k _ l ) I / 2 ( ~  k -- t~k_ 1) ~-- -- 6 = const 

For this fixed 6 the total sum ~, is 

"Y = 2 ( W k W k - 1 ) l / 2 ( ( ~ k  --  ~ k - l )  2=  2 62 
(wkw~_l) ~/2 
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But 8 is set by the normalization of ~: 

N 

1 = 2 + 1) = 
n = l  

Collecting terms we have 

- 1  fio~7, ~' 

(w~wk_ ~)1/2 

(WkWK_O~/2 ~ kfle -~'k 

By Laplace's method this is asymptotically (for/~$0) 

The denominator e [q,] = ~ 2 w  k is a nonsingular function of/~ since q'k goes 
to very small values before w k begins to make trouble. Therefore this sum is 
estimated by 

1/~ I/~ 
Y,  w k =  

k ~ l  k = l  

whose main contribution is from k near 1 and which is therefore nearly 
independent of/z for small/z. It follows therefore that 

/ ~ 0 ~  ~f l+  1 

Time evolution under the matrix PN does not conserve probability. If 
we imagine an initial probability distribution to be expanded in terms of 
the eigenfunctions of PN then the asymptotic loss of probability is governed 
by the largest eigenvalue of PN" Writing this largest eigenvalue as e - r ,  F is 
the decay rate with time measured in time steps of the stochastic process. 
By the definition of B and for small fl0 we have 

I" = - l o g ( 1  - aflo ) ~ aflo ( 4 . 1 8 )  

We have thus established a decay rate F ~ I  x~+ 1, where we now assume that 
the upper bound given above is not just a bound, but is actually attained. 
Evidence for that assumption is presented in Table II. 

In Section 3 of this paper we used the work of Robinson (as) to show 
that Im[p(/~)]~/~fi- l. The fact that F does not share this dependence is not 
a disagreement with the Langer theory (Langer (2~ since there is the need 
to insert a kinetic factor which can indeed be /~ dependent. Specifically, 
Langer finds 

F ~  ~ Im(free energy) = ~r Im [ p (/x) ] (4.19) 

with ~ a kinetic factor which we now calculate. 
In contrast to our calculations up to this point the determination of ~r 

depends on a specific model. 
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Table II. A List of the Smallest Eigenvalue for 
Various/~ and/L for the N • N Matrix B. For Each fl 

We Wish to Establish the Form ~ / ~ "  and Fit the Value of m. 
For Successive Values of ~ (7~' and ~") We Calculate th = 

[log(X'/~")]/[log(/~'/p/')]. This is Listed as Well as its 
Extrapolation to/L = 0. 

B ~ ~, ~ r~o 

3 0.2 5.894E - 3 3.6332 
3 0.1 4.750E - 4 3.8111 
3 0.05 3.384E - 5 3.9075 
3 0.025 2.256E - 6 

4 0.4 6.203E - 2 4.0717 
4 0.2 3.689E - 3 4.5515 
4 0.1 1.574E - 4 4.7973 
4 0.05 5.657E - 6 4.9082 
4 0.025 1.884E - 7 

6 0.4 5.224E - 2 5.5346 
6 0.2 1.127E - 3 6.3748 
6 0.1 1.358E - 5 6.7326 
6 0.05 1.277E - 7 

4.009 

5.006 

7.049 

The  decay  of the metas tab le  state is p ic tu red  as passing through a 
cr i t ical  droplet .  A l though  we jus t i f ied  this for the urn and  a l though we used 
this to mot iva te  the choice of x in es t imat ing fl0, we have not  unti l  now had  
to a d o p t  this model .  F r o m  Langer  (2~ ~ is the e igenvalue of the most  

uns tab le  m o d e  in the n e i g h b o r h o o d  of the cri t ical  droplet .  Specif ical ly the 
free energy is e x p a n d e d  in a quadra t i c  fo rm a b o u t  the d rop le t  state. In  most  
d i rec t ions  in funct ion  space this d rop le t  s tate is a local  m i n i m u m  and  the 

quad ra t i c  form has  posi t ive eigenvalues.  F o r  systems with t rans la t ion  
invar iance  (which the urn  is not)  there  will be co r respond ing  zero eigenval-  
ues. In  the d i rec t ion  a long which the d rop le t  is uns tab le  the free energy is 
m a x i m a l  and  the associa ted  eigenvalue of the quadra t i c  form is jus t  ~. F o r  
the urn mode l  the d rop le t  " s ta te"  cor responds  to an urn having  occupa t ion  

k 0 ~  1//z. The  "free energy"  tha t  one uses in the d rop le t  ca lcu la t ion  is the 
mic roscop ic  free energy which would  in fact  be  the energy if one were 
descr ib ing  states with exact  mic roscop ic  coordinates .  F o r  the urn this 
is jus t  - ( 1 / f i ) l o g w  k with w k as usual  k - r  The  second deriva-  
tive of logw k with respect  to k is ( c o n s t ) / k  2 so that  ~ / ~ 2 .  This yields 

I m  p ~ / ~ P +  1 in ag reemen t  with the lu B+ 1 dependence  of F der ived  above.  
F ina l ly  we reexamine  the system men t ioned  at  the end of Sect ion 3. 

F o r  f ( z )  given by  a l a cuna ry  power  series with radius  of convergence  1 the 
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urn energies are defined as in Eq. (3.13). In that section we took it to be 
"obvious" that although analytic continuation to t~ > 0 (Izl > l) was impos- 
sible the stochastic process was substantially unchanged for small enough c. 

As observed earlier, the relation I ' /~  = I m p  cannot be expected to be 
rigorously true for /x finitely away from zero for systems with stochastic 
dynamics. This is because a slight change in spin flip rules can affect the 
precise value of F / ~  for the finite droplets. Such a change, however, has no 
influence on the equilibrium pressure p(/~), nor on its analytic continuation. 
Therefore the best that can be hoped for is an asymptotic relation 
I ' / ~ I m  p for N,0. But for fixed E there will always be a sufficiently small 
/x for which the dynamics are in fact affected. For/x$0 the size of the matrix 
B used for studying the decay rate grows as some multiple of 1//~. (This is 
clear from our estimates and has been confirmed numerically as well.) 
Therefore no matter how sparse the series for f ( z ) ,  eventually there will be 
an arbitrarily large number of terms from f in the range 0 ~< k ~< O(1//~). It 
is thus clear that the influence of f ( z )  can be important, but let us see in 
detail how the eigenvalues of the matrices A and B are affected. In our 
demonstrations regarding B we used the quantities w k, in a way that was 
indifferent to whether or not a given w k contains contributions from f. The 
important estimate involved a quantity ('~-l)min~2(WkW k 1) 1/2. How- 
ever, for sufficiently small/~ this sum is in fact determined by f. For the 
usual Wk'S the minimum term occurs for k ~ l / l ~ ,  for which Wl/~ > l~r ~ a 
quantity smaller than e for small enough ~. Therefore although there might 
even (for appropriate f )  exist a limit of X for/x$0 its properties would be 
determined neither by f ( e  B") nor by p(/~) for/~ < 0. 

For the matrix A [for which the limit ( - / ~ 0  may be more appropri- 
ate] slightly different trouble erupts because of f.  Recalling Eq. (4.9) and 
those following, the important properties of X arose because a k for large k 
was approximately equal to 2. Now (with f )  that breaks down. 

5. SUMMARY AND CONCLUSIONS 

We have studied a model exhibiting a first-order phase transition from 
both a dynamical and thermodynamical point of view. Our goal was to 
check the relationship of the concepts of metastability and analytic continu- 
ation and in particular the formula Im[p( /~ ) ]~F /~  where P(t~) is the 
pressure as a function of chemical potential, F is the decay rate out of the 
metastable state under the stochastic dynamics, and ~ is a kinetic factor for 
that decay. The imaginary part of p(b0 may be nonzero because ~ is in a 
metastable regime and p(/~) is an analytic continuation of the real, physical 
p(t~) defined in the stable regime. The model is an "urn" model in which 
an energy is associated with having a number of particles in the urn and a 
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stochastic dynamics is defined consistent with the thermodynamics of the 
urn, namely, its equilibrium state is the Gibbs state of the urn. The urn 
model is closely related to a lattice droplet model whose thermodynamics 
had been studied earlier (Roepstorff(27)). 

The chief message of this paper is that the proposed relation between 
metastability and analytic continuation is verified both for the logarithmic 
model and for our exotic, singular variation on it. We found this to be 
impressive since our investigations at first showed disagreement even for 
the logarithmic model. But then as subtle properties of the matrix asso- 
ciated with the decay rate calculation began to emerge all the factors came 
together and conspired to confirm the relation Imp,-~F/~.  The second 
confirmation arose from what we at first considered a counterexample. The 
urn model is sufficiently flexible to produce a system for which analytic 
continuation is impossible. At first it seemed that dynamical metastability 
should be unaffected and that if the metastability-analytic continuation 
connection would be retained then somehow these pathological urn models 
would have to be disqualified on "higher" grounds, invoking nature's 
simplicity perhaps. However, higher grounds were not needed and we find 
in fact that when the pressure (or free energy) has a natural boundary there 
is good reason to expect trouble with the dynamical process as well. 

Another point that we make in this paper is a simple observation 
concerning the relation Im p~F/~. The fact that many rules for stochastic 
dynamics lead to the same equilibrium state implies that for a finite 
distance into the metastable regime the above relation may not hold 
exactly. Hence the best that can be expected is an asymptotic relation at 
the transition. Hamiltonian dynamics, however, may allow for a sharper 
correspondence. 

Finally, the old theme of eigenvalue degeneracy at phase transitions 
appears here in a new and interesting way: in the dynamics. The dynamics 
of the system are studied by means of a master equation and the eigenval- 
ues of the associated linear operator. As the system approaches the first- 
order transition from the stable side (so this observation does not depend 
on any ideas about metastability) the eigenvalue associated with equilib- 
rium (namely, 1) is approached by another eigenvalue sufficiently rapidly 
to cause the system's equilibration to become extremely slow. This is not 
the critical slowing down of second-order phase transitions although it 
certainly suggests a way to study that problem too. 
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